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High Performance Clusters

• Clusters have become the predominant computing platforms providing 
high-performance, and high-availability.  Such systems:

Tackle high-end applications known as Grand Challenge problems

Provide services such as search engines, data mining, eCommerce, web 
hosting, digital libraries

• Main components in Clusters of Multiprocessors:
The Symmetric Multiprocessors (SMP) node

The Communication Subsystem

• Clusters need high-performance networks, and efficient communication 
system software.

Myrinet

QsNetII

InfiniBand
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Multi-rail Networks

• Multi-rail networks have been introduced to overcome bandwidth 
limitations for today’s most demanding applications, and to enhance 
fault tolerance. 

QsNetII (native support) and InfiniBand (MVAPICH)

• How to distribute the traffic over multiple rails?

Multiplexing 

Message Striping

• QsNetII uses multiple NICs per node to construct a multi-rail network.

Native support at the user level for a simple even message striping

Only for point-to-point messages
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Collective Communications

• Many parallel applications need communication patterns that involve 
collective data movement and global control, known as collective 
communications. 

• Such applications mostly use Message Passing Interface (MPI).

MPI supports both point-to-point and collective communications.

Efficient and scalable implementation of collectives is very 
important to the performance of such applications.

• Problem statement:

Can we design and implement efficient collectives on top of    
multi-rail Quadrics QsNetII? 

What are the design challenges?

How much performance improvement can be achieved?
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Overview of QsNetII

• QsNetII is the latest generation interconnect from Quadrics, offering low 
latency and high bandwidth.  It consists of two ASICs: Elan4 and Elite4.

Provides a protected user-level access to NIC.

Supports a globally shared virtual-memory system.  Data can be 
transferred directly from a source virtual address to a destination 
virtual address.

Supports a connectionless model, with reliable and ordered delivery.

Communication software includes both MPI and SHMEM, 
implemented with libelan and libelan4 in the Elan library.
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Overview of QsNetII

• QsNetII:

Supports point-to-point send/receive, and Remote Direct Memory 
Access (RDMA) models.

RDMA write (elan_put) and RDMA read (elan_get) are 
supported. No need to register buffers.

Send/receive mode is supported through Tports, a two-sided 
message-passing semantic as in MPI.  MPI uses Tports as its 
transport layer.

Even message striping support for large messages on multi-rail 
networks for Elan RDMA put and get, SHMEM put and get, and 
Tports send/receive.
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Overview of QsNetII

• QsNetII supports a number of collectives directly at the Elan level.

Hardware broadcast (elan_hbcast), and hardware barrier 
(elan_gsync)

Reduction (elan_reduce), gather (elan_gather), and personalized all-
to-all (elan-alltoall)

These collectives are directly used by the MPI library.  Enhancing their 
performance will directly affect the MPI layer. 

Collectives are currently implemented on top of point-to-point Tports 
or elan_put, and may gain multi-rail striping from those underlying 
subsystems.

elan_put and elan_doput are non-blocking functions used in the 
implementation.

elan_doput is similar to elan_put with the exception that is sets a 
destination event on completion.

elan_wait is used to test or wait on for completion of the transfer.
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Experimental Framework
Four 4-way Dell PowerEdge 6650

Processors
Kernel

L1 cache

L2 cache

L3 cache 512KB shared and unified, cache

QsNetII switch Two QS8A-AA E-series 8-way switches
QsNetII NIC Two QM500-B per node
Quadrics software Hawk release with the kernel patch qsnetp2, kernel 

module 5.10.qsnet, QsNet library 1.5.6-1, and QsNetII

library 2.2.4-1.
Launch tool pdsh 2.6.1

MPI implementation Quadrics MPI, version 1.24-47.intel81

PCI-X 100 MHz, 64 bit

Main Memory

4 – 1.4 GHz Intel Xeon MP per node
Vanilla version 2.6.9 

12KB execution trace cache, 8KB data cache

256KB shared and unified

2GB DDR-SDRAM per node, on a 400 MHz FSB
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Elan RDMA Write (elan_put)

• Two-rail has a much better performance than single-rail.

• elan_get achieves the same bandwidth, however, has a slightly larger 
short message latency.
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Elan Tports (send/recv)

• The single-rail bandwidth is similar to RDMA, but dual-rail falls short of.

• The short message latency of Tports is slightly larger than the RDMA.
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MPI send/receive

• Both-way MPI bandwidth is not affected by the dual-rail. 

• The short message MPI latency is close to that of the Tports.
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Current Collective Performance (16 processes)

Hardware broadcast (elan_hbcast)
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Gather (elan_gather)
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Alltoall (elan_alltoall)
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Observation

• With a few exceptions, the current collectives do not benefit from the 
multi-rail systems.  Excellent opportunities exist for devising multi-rail 
collectives.  Those include:

Designing single-port collective algorithms that gain multi-rail 
striping from the underlying communication subsystem.

Designing multi-port collective algorithms for multi-rail 
systems that also benefit from multi-rail striping.

We will focus on Scatter, Gather, and All-to-all 
Personalized Exchange collectives, and implement 
them directly at the Elan level.
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Multi-port Collectives: Preliminaries

• Assume N is the number of processes, and k is the number of ports in the 
multi-port algorithms (equal to the number of available rails).

• Each process has the ability to send and receive k messages 
simultaneously on its k links.

• The assumption is that the number of processes, N, is a power of (k + 1).  
Otherwise, dummy processes is assumed to exist until the next power of 
(k + 1), and the algorithms apply with little or no performance loss.

• Definitions:

Scatter operation: the root process has a unique message for each of 
the remaining N - 1 processes.

Gather operation: is the exact reverse of the scatter operation.  The 
root process receives a message from each of the remaining N - 1 
processes. 

All-to-all Personalized Exchange operation: in this collective, each 
process has a unique message for each of the remaining N - 1 
processes.
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Multi-port Scatter Algorithms

• Algorithm A: Multi-port Spanning Binomial Tree algorithm for Scatter
1. The scattering process sends k messages of length N/(k + 1) each to its 

k children.  At the end of this step, there are (k + 1) processes having 
N/(k + 1) different messages.

2. These processes at step 2 send one (k + 1)-th of their initial message to 
each of their immediate k children.

3. This process continues and all processes are informed after logk+1 N
steps.

ts is the message startup time, lm is the message size in bytes, 

and τ is the time to transfer one byte.

T = (ts × logk+1 N) + (lm × τ ) (k +1)(logk+1 N )− i

i=1

logk+1 N

∑

T = (ts × logk+1 N) + N −1
k

(lm × τ )
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Multi-port Scatter Algorithms

• 9-process scatter: 0

[1,2,3]          [4,5,6]      [7]    [8]

1                4         7           8
[2]           [3]  [5]           [6]

2                 3 5            6     

This algorithm has a logarithmic number of steps and suitable for 
short messages.

Processes may be spanned such that packing/unpacking would 
not be needed.  Otherwise, intermediate copies may be needed.
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Multi-port Scatter Algorithms

• Algorithm B: Multi-port Sequential Tree algorithm for Scatter:

At each step, the scattering process sends its k different 
messages to k other processes.  There are a total of (N - 1)/k
communication steps.  Therefore, the total communication cost 
is:

Suitable for medium to large message sizes

)(1 τ×+×
−

= ms lt
k

NT
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Multi-port Gather Algorithm

• Multi-port Spanning Binomial Tree algorithm for Gather:

The algorithm is the exact reverse of the scatter, and the same 
spanning tree can be used.

Communication starts from the leaf processes.

Messages are combined in the intermediate processes until it 
reaches the gathering root.

The total communication cost is:

T = (ts × log k+1 N )+ N −1
k

(lm ×τ )
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Multi-port All-to-all Personalized Exchange

• Multi-port Direct algorithm for All-to-all Personalized Exchange:

Processes are arranged in a virtual ring.

At step i, process p sends its message to processes (p + (i - 1)k + 1) 
mod N, (p + (i - 1)k + 2) mod N, …, (p +ik) mod N.

The total communication cost is:

)(1 τ×+×
−

= ms lt
k

NT
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RDMA-based Implementation

• No need for memory registrations 

• No need for address exchange for message transfers.  

• Senders have direct control over the rails by using elan_doput function. 
Even message striping is used.   

elan_wait is used to make sure the user-buffer can be re-used.

• Remote event notification is enabled in elan_doput for multi-rail 
systems.  This allows multi-rail striped (ELAN_RAIL_ALL) put 
messages to have a devent (destination event) for each rail.

The destination event is set once in each rail and the destination 
process calls elan_initEvent once for each rail, and wait for each 
ELAN-EVENT to be returned.  This guarantees a message is 
delivered in its entirety on a multi-rail system.

• No synchronization is used in the implementations.
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Scatter Performance

Scatter (16 processes)
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As expected, the 
multi-port binomial 
algorithm is better 
for short messages.
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Scatter Scalability

Scatter scalability (16B)
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Gather Performance
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Gather Scalability

Gather scalability (16B)
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With increasing number
of processes, elan_gather
is better for short 
messages.
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All-to-all Personalized Exchange Performance

Altoall (16 processes)
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Parallel Processing Research Laboratory
Department of Electrical and Computer Engineering

IEEE CAC-2006

31

All-to-all Personalized Exchange Scalability 

Alltoall scalability (16B)
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Conclusions

• Efficient implementation of collective operations is critical to the 
performance of applications.

• We proposed a couple of multi-port algorithms for short and long 
messages for the scatter operation.

• The implementation of the multi-port gather gains an 
improvement of up to 6.35 for 1MB message over elan-gather.

• The multi-port all-to-all personalized exchange performs better 
than elan_alltoall by a factor of 2.19 for 16KB messages.

• For short messages, better algorithms should be used.
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Future Work

Work on standard exchange, and bruck’s index algorithms are 
under way.

We intend to use shared memory for short messages among 
the co-located processes to speedup the collectives.

Adaptive striping will also be considered.

We will be working on other collectives as well.

NIC-based or NIC-assisted collectives for multi-rail networks 
are of interest.

Basic hardware collectives could be used to implement other 
collectives.

Evaluate using larger testbeds.
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Questions?
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